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A new approximate method for the determination of the valence bond angles for MX;-type
molecules, based on the maximum overlap principle, is proposed. The valence bond angles are deter-
mined from the conditions of maxima of the “total bonds strength”. The method has been used to
calculate the valence angles and the hybrid orbitals for the water, and the ammonia molecule, respec-
tively. The calculated valence bond angles for both molecules are about 2° too high with respect to
experimental equilibrium values. Also the best hybrid orbitals using the Golebiewski simplified
method were calculated.

Eine neue Niherungsmethode fiir die Bestimmung der Valenzwinkel fiir Molekiile vom Typ MX,
wird vorgeschlagen, die sich auf das Prinzip der maximalen Uberlappung griindet. Die Valenzwinkel
werden aus der Forderung nach einem Maximum der ,,Gesamtbindungsstérke” abgeleitet. Die Methode
wird zur Berechnung der Valenzwinkel und der Hybridorbitale von H,O und NH; angewendet. Die
berechneten Valenzwinkel sind fiir beide Molekiile etwa 2° zu hoch gegeniiber den experimentellen
Gleichgewichtswerten. Die besten Hybridorbitale werden entsprechend der vereinfachten Methode
von Golebiewski berechnet.

On propose, sur la base du principe du recouvrement maximum, une nouvelle méthode approchée
pour la détermination des angles des liaisons de valence des molécules de type MX,. Ces angles sont
déterminés & partir des conditions de maxima de la «force totale de liaison». La méthode a été utilisée
pour calculer les angles de valence et les orbitales hybrides de I'eau et de ammoniac. Les valeurs
obtenues sont supérieures d’environ 2° aux valeurs expérimentales. Les meilleures orbitales hybrides
de ces deux molécules ont été aussi calculées par la méthode simplifiée de Golebiewski.

Introducﬁon

The prediction of bond angles, in general, has to be carried out with approxi-
mate methods which suggest plausible structures rather than give definite de-
monstrations of structure. Unfortunately, accurate calculations are tedious and
very complicated, and only a few have been carried out. Comparatively con-
siderable calculations have been reported in literature on the H,O molecule
[2-7]. Obtained results are summarized in Table 1. The NH; molecule has
received also much attention from a number of authors [6-117], who used different
approaches and obtained results with different degrees of accuracy (Table 2).

From the review contained in the Table 1 and 2 it follows that the used methods
lead, however, to long computations. It is preferable to compute valence bond
angles by methods which are less obvious but which are easier to use.

Pauling and Sherman [1] have shown for a one electron bond that its energy
varies considerably with force of the hybrid in the direction of the bond. Many
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Table 1. Calculated values and experimental equilibrium bond angle for H,O

Reference Method of calculation Number and type Bond angle
of basic functions
Present calculation Maximum overlap method 5 STAO’s 107°10°
3onOand1oneach H
Coulson® Non-localised orbitals p;and p,on O 90°
h, and h, of the H
Duncan® Method of localised sandpon O and h, 120.2°
orbitals and h, on H
Boys® Single-determinant linear combination of 96°
one-center SCF-CI determinants corresponding
to thirty configurations
Frost? Model of floating Spherical GTO’s 88°
localised orbitals
Pople® CNDO method 5 STAO’s with 107.1°
30n O and 1 on each H
Poplef INDO method 5 STAO’s with 108.6°
3on O and 1 on each H
Experimental ® 104°45

® Ref. [2]. - ® Ref. [3]. — © Ref. [4]. — ¢ Ref. [5]. — © Ref. [6]. — f Ref. [23]. — & Ref. [7].

Table 2. Calculated values and experimental equilibrium bond angle for NH,

Reference Method of calculation Number and type Bond angle
of basis functions
Present calculation Maximum overlap method 7 STAO’s with 109°35"
4 on N and 1 on each H
Higuchi® Approximate polycenter 8 STAO’s with 108°
SCF-MO 5on N and 1 on each H
Kaplan® Single-determinant 8 Hartree-Fock AQO’s, 106°47
polycenter SCF-MO 5on N and 1 on each H
Moccia® Single-determinant 21 STAO’s with [ up to 3 110°2
one-center SCF-MO
Joshi® Single-determinant 25 STAO’s with lup to 5 109.34°
one center SCF-MO
Frost® Model of floating Spherical GTO’s 88°
localised orbitals
Poplef CNDO method 7 STAO’s with 106.7°
4on N and 1 on each H
Pople® INDO method 7 STAO’s with 109.7°
4 on N and 1 on each H
Experimental ® 106°47

® Ref. [8]. —® Ref [9]. — © Ref. [10]. — ¢ Ref. [11]. — ® Ref. [5]. — f Ref. [6]. — & Ref. [23]. ——

® Ref. [7].
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objections can be raised to Pauling’s [1, 127 concept of the strength of a hybrid.
For example Maccoll [13] has observed that the strength of a hybrid bond orbital
as defined by Pauling and the C—C(s) bond dissociation energy does not always
increase in the same order. Therefore Maccoll has proposed the use of the overlap
integral between a hybrid orbital and the orbital characterising the other atom
of the bond.

In the present paper a new approximate maximum overlap method for the
determination of the bond angles for polyatomic molecules is proposed.

Calculations and Results
a) Calculations: The General Method

Because bond overlap is very sensitive to the angle of deviation between the
hybrid forming a bond and the straight atom-atom line, and because this angle
does not depend strongly on the particular choise of atomic orbitals, or atomic
overlap integrals employed, the method of maximum overlap seems suitable for
the determination of bond valence angles in molecules.

Let us assume that we know the approximate geometrical configuration of the
molecule of a type MX, and also any set of linearly independent orthonormal
atomic orbitals ¢, ..., ¢, of the central atom, M, and @, ..., @, a set of atomic
orbitals of the ligands. Murrell [14] suggested to look for the k best hybrid
orbitals of the central atom M,

<1P1> <(P1> <a11 aln) (¢1>
=4 )= : : (1)
Vi Pn A1 -+ Qgn/ \Pn

(where n = k) such that the sum of all “bond strength”

i

(B;lyy =1trS; @

13

is a maximum. The matrix S, in Eq. (2) is given by the formula:

<<@1|W1>"'<@1|Wk> CATD R CHT
S = : : ) = ( : : A"=84". (3)
<@k|1P1>"‘<@k|Wk> CALZDERR AT W

A simple method of constructing y; was developed by Lykos and Gilbert [15]
and independently and differently by Golebiewski [16]. ‘

The calculations are carried out within the framework of the Golebiewski
simplified maximum overlap method. In the practical applications of the maximum
overlap principle for the determination of bond valence angles in molecules, we
need the explicit formulae for overlap integrals between the s, p, and d orbitals
proposed by Golebiewski [17]. For example, all overlap integrals {@;|¢;) used
in the present paper, can be expressed in terms of the angular co-ordinates of the
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center of ligands o — @;-type orbitals in the following form:
(O|s) = 5,4X),

{B|ps) = §;,(X) sinv, cos d, ,
{@|p,> = S§,,(X)sinv, sing,,
O|p.> =S,,(X)cosu,.

In these formulae v, and ¢, mean the angular co-ordinatés of the atom X, on which
the ©@-orbital is centered. The standard overlap integrals S,.(X) and S,,(X) depend
still on bond length and the nature of both atoms. They can be evaluated if one
knows the radial parts of the orbitals. Following the Golebiewski procedure we
construct the overlap integral matrix § and in the next step the matrix §S7, where
ST is transposed. If A is a scalar parameter, and SST is a square matrix of the order
k < n and I the unit matrix of the same order, then we get the eigenvalues from the
characteristic matrix of SST

4)

K(A) = [AI —S87] )
we get by solution of the characteristic equation
e A" e A" 4 4, =0 6)
where ¢, are functions of the elements of SST and are defined as
o = (—1F8, (7

where S, is the sum of all head minors of order k which appears in the matrix SS7.
For the sum, 4, A, ..., 4,, of the characteristic roots it is known that

/11-|-I12+-~~+1,}=t1'(SST). (8)

For a given geometrical configuration and a given set of orbitals ¢,, @,, ..., @,
the “total bonds strengths”, E, is given by the formula

E=1tr(SSTY?2 =172+ 2424 ... 4 422, 9)

The bond strength, E, according to Eq. (8) is a function of only (n — 1) independent
variables, 4;, 1.e. E= E(4,, 4,, ..., 4,_;). The condition that, E, should be a maxi-
mum is given by

o0E O0E J0E

dE=——dA;+ —dA, + -+ —

ai, ST g, EY
where dA,,dA,, ..., dl,_; are independent and not zero. To determine the “best”
characteristic roots, 4;, the “total bonds strength” must now be maximized with
respect to all of them, independently and simultaneously. This leads to the equa-
tions:

di,-; =0 (10)

¢E
04,
Our problem is now in principle solved. We need only to evaluate the “best”

characteristic roots of the system of Eq. (11) to obtain the eigenvalues of (SST)*/2,
which are numerically equal to the orbital energies of the LCAO-MO method

=0 foralli (i=1,2,..,n—1). (11)
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[17], necessary and sufficient conditions for determination of the equilibrium
bond angles in molecules then follow from them. The “total bonds strength” may
" be considered as a parameter on the basis of whichwe can speak about the stability
of a molecule. A direct solution of the characteristic Eq. (6), for ligands more than
k>3, would be (aggravatingly) tedious and difficult. One can use symmetry
properties to obtain the non-variational eigenvalues of §§™ in a much more simple
way.

b) Results: H,0O, NH; as Examples
H,O Molecule

We illustrate our method on the example of the H,O and NH, molecules.
The most familiar angular triatomic molecule is water, H,O. We can conveniently
derive the molecular orbitals and bond angle for the H,O molecule by placing
the oxygen atom at the origin of an xyz co-ordinate system. The two hydrogens
are placed in the xz plane, as shown in Fig. 1. It is convenient to bend each hydro-
gen the same angle from the z axis, so that the z axis bisects v. The valence orbitals
involved are 2s and 2p,, 2p,, and 2p, for oxygen and 1s for hydrogen. The 2p, is
available for bonding, but hydrogens do not have ¢ valence orbitals in the ground
electronic state [18].

y
Fig. 1. Co-ordinate system for H,O

The spherical co-ordinates of hydrogen atom are H,(ro-y, v,¢=0°)
Hy(ro-n,. v, ¢ = 180°). Using the following set of atomic orbitals, the atomic
overlap integrals matrix becomes:

1s, Is,
2s /S, Sas
R=2p|S,,sinv —§, sinv]. (12)

2p, \S,,cosv  §,,cosy

In the Golebiewski method [17] the matrix RT, which has k rows and »n columns
is noted by S.
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The symmetric and real overlap matrix S will then be

ST — (Sﬁs + 8%, S, + S2, cos 21))

1
S2,+ 82, cos20 Sh+ 52, (13

where S,;=<0 2s|H 15,),S,,= <O 2p,|H 1s,>,(x = aor band n = x or y) represent
overlap integrals between appropriate atomic orbitals.
The eigenvalues of the characteristic matrix §ST (13) are

M=a+p ly=a—p,
A+ A, = tr(SST) = 20

where o = S2,+52, and = S2,+ 52, cos 2v.

The variational procedure for maximizing the “total bonds strength” of the
H,0O molecule:

E=11%4 112

then leads to following best eigenvalues of the matrix S§: 4, =1, = 2> 0. From
this follows that =0, or
SZ
—c0s2v = cos(180° — 2v) = —~.
op

(14)

The overlap integrals are all calculated explicitly using formulas given by
Mulliken et al. [19]. The hydrogen-oxygen bond length is 0.960 A [7]. These
values lead to the following atomic overlap integrals S,,=0.238 and S,,=0.438.

This would make the angle between the O—H bonds in water equal to 107°10', as
compared with the experimental equilibrium value 104°45' [7].

NH; Molecule

A familiar example of a trigonal-pyramidal molecule is NH ;. The three hydro-
gens H,, H, and H_, from which H_ is apart from the xz plane, form the base of a tri-
gonal pyramid that has the nitrogen at the apex with the hydrogen H, and H, which
lie in the plane xz. Each N-H, and N-H, makes angles v,=v,=v with zand N-H_
makes an angle v, with z co-ordinate (Fig. 2). The spherical co-ordinates of
hydrogen atoms are H,(ry_p,, U, ¢, =0°), Hy(rnp,, v ¢ =180°) and H (rn-g,» o>
¢,=90°). Bonding in NH; involves the hydrogens 1s valence orbitals and the
nitrogen 2s, 2p,, 2p, and 2p, valence orbitals. We construct the following overlap
matrix

Is, 1s,, 1s,
2S SUS SG'S SO’S
R— 2p,| S,pcosv S;,cosv S, cosv| (15)
2p,{ O 0 S,p SN,

2p, \Sspsinv —S;,sinv 0
For the matrix product SST we have

SZ,+S2, 82+ 82, cos2v SZ,+ 82, cosv cos v,
SST={ S2,+ 82, cos2v S+ 82, Sés + S‘zp COS v COSV, (16)
82+ S2,cosvcosy, 82+ 82, cosvcosv, S3+S7,
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where S,;=<N 2s|H 1s,> and §,,=<{N 2p,|H1s.> (n=xoryorzandx=aor b
or ¢) are overlap integrals between appropriate atomic orbitals.
The eigenvalues of the characteristic matrix ST are

=o—PB s =+ B/2+1/2(82 + 8y2)2 (17)
and
M+ A+ A, =tr(SST) = 3u (18)

where a = SZ,+ 52, B=SZ,+ 82, cos2v, and y = S+ S2, cosv cosv,.

Fig. 2. Co-ordinate system for NH,

It is now required to find the value of v and v, that makes the energy of the system
a minimum, and hence the “total bonds strength” a maximum. The variational
procedure for maximizing the “total bonds strength” of NH; molecule

E =212+ 342 4 232 (19)

then leads to following “best” eigenvalues of the matrix $§T, which are 1, =41,
= A3 =0>0 and hence =0, and also y =0. This means that

cos2v = —S82,/SZ, (20
Cosv, = — (2)1/2 Sgs/Sr?;p(Sgp - Sezrs)l/2 . (21)

The hydrogen-nitrogen bond length used is 1.014 A [7] and the overlap integrals
are: S,,=0.286 and S,, = 0.491. From Eq. (20) for 2v we have 109°35', and this is
bond angle H,—N-H, and from Eq. (21) for v, it follows that v, =126°15". Bond
angles H —N-H,_ are determined on the basis of scalar product of vectors defined
by their co-ordinates: x,=ry_ync0s(90° —v), y,=0, z,=ry_y COSV, X = —Fy_y
€08(90° —v), ¥, =0, z; =Ny €OV, X, =0, y, = ry_g €08(90° — v), z, = ry_y COST,.
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We may write
cos(H,~N—-H,) = cos (H,~N-H,) = cosv cosv, = - §Z,/8Z,= —0.3351 . (22)

This theory leads to calculated equilibrium bond angles 109°35 which are in
reasonable agreement with the experimental.

Best Hybrid Orbitals for H,O and NH,

Now we find the best hybrid orbitals for the molecule H,O by the Golebiewski
simplified method [17]. The best hybrid orbitals are expressed in the form

{y} =A{p} =S8""'>S{¢} (23)

where A is the matrix of the best linear transformation coefficients; {y} and {¢}
are column matrices. For the matrix (SST)™'/? we have

e (ST 0
(88T 1/2=<0 2 (S§S+S3,,)‘”2 ) (24)

The best hybrid orbitals are obtained according to Eq. (23), for calculated valence
angle for H,O 20 =107°10" it follows:

w, = 0.478s+0.707p, + 0.522p, ,
w, = 0.478s — 0.707p, +0.522p, .

The “total bonds strength” for the H,O molecule is:
E = (trSST)'/? = 2(S2,+ 52,)'/* = 0.9968 .

(25)

The diagonal elements of E have been chosen positive to ensure the maximum
value of the trace [16].

Similarly as for H,O the best hybrid orbitals are defined also for NH ; molecule
by Eq. (23), where

(SZ,+82,)71* 0 0
(SSTH)"2={ 0 (SZ,+82)7* 0 . (20)
0 0 (S2,+ 82,712

For the angles calculated in this paper for best hybrid orbitals we have

1, = 0.508s + 0.503p, + 0.712p, , .
v, = 0.508s — 0.503p, + 0.712p,, (27
p; = 0.5085 4 0.516p, —0.703p, .

The “total bonds strength” for the NH; molecule is: E =1.7046.

Discussion

Volkov and Dyatkina [20], also used a method of maximum overlap in order
to find stable configuration of molecules UF, and UF;. Maksi¢, Klasinc and
Randié [21] succesfully applied the maximum overlap method to the calculation
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of the hybridization in high strained small ring molecules. The most important
feature of the method used here is that it maximizes directly the “total bonds
strength”, without using the other conditions. Mulliken [22] has examined the
bonding energy and the overlap integrals in some depth. Mulliken has drawn
attention to the fact that the values of this integrals depend strongly on the
particular form of explicit functions used to represent an orbital, and that, for
example a function of Slater’s and a self-consistent field function lead to different
results. In the present paper the calculated equilibrium valence angles for H,O
and NH; are about 2° too high with respect to experimental values. A better
agreement with experimental values could be expected with Clementi or some
- other more realistic wave functions. It is possible to draw a comparison between
the maximum overlap and the more elaborate other methods. Bond angles of
smaller polyatomic molecules have been calculated by Pople and Segal [23]
using the MO-LCAO-SCF method with zero-differential overlap approximation.
In the light of their results the success of the present calculation is very astonishing.
However, their methods employ semi-empirical bond parameters which are
adjusted to experimentally known properties of other, usually diatomic mole-
cules. In this way large classes of more or less similar molecules can be calculated
sometimes with rather high accuracy. Valence angles for more accurate methods,
such as mentioned semi-theoretical methods in the Tables 1 and 2, or even
more accurate sophisticated approaches, may not easily yield results. From this
point of view our method based on the maximum overlap principle appears to be
particularly useful for determination of the stable configuration of molecules.

From the obtained results it follows that according to the variation principle
of quantum mechanics, the individual AQ’s composing a hybrid AO ini a molecule
should be adjusted in such a way as to maximize the “total bonds strength”. A
good example is that the improvement of the H,O and NH, molecule valence
bond angles and hybrid wave function by using 2s — 2pc hybrid AO’s instead of
pure po AO’s.

It is intended to extend calculations of the type used here to other symmetrical
triatomic AB, and tetratomic AB; molecules.
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