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A new approximate method for the determination of the valence bond angles for MXk-type 
molecules, based on the maximum overlap principle, is proposed. The valence bond angles are deter- 
mined from the conditions of maxima of the "total bonds strength". The method has been used to 
calculate the valence angles and the hybrid orbitals for the water, and the ammonia molecule, respec- 
tively. The calculated valence bond angles for both molecules are about 2 ~ too high with respect to 
experimental equilibrium values. Also the best hybrid orbitals using the Golebiewski simplified 
method were calculated. 

Eine neue N~iherungsmethode ftir die Bestimmung der Valenzwinkel ftir Molekiile vom Typ MX~ 
wird vorgeschlagen, die sich auf das Prinzip der maximalen Oberlappung griindet. Die Valenzwinkel 
werden aus der Forderung nach einem Maximum der,,Gesamtbindungsst~irke" abgeleitet. Die Methode 
wird zur Berechnung der Valenzwinkel und der Hybridorbitale von HzO und NH 3 angewendet. Die 
berechneten Valenzwinkel sind fiir beide Molekiile etwa 2 ~ zu hoch gegeniiber den experimentellen 
Gleichgewichtswerten. Die besten Hybridorbitale werden entsprechend der vereinfachten Methode 
von Golebiewski berechnet. 

On propose, sur la base du principe du recouvrement maximum, une nouvelle m~thode approch6e 
pour la d6termination des angles des liaisons de valence des molecules de type MX k. Ces angles sont 
d6termin6s "h partir des conditions de maxima de la <<force totale de liaison>>. La m6thode a ~t6 utilis~e 
pour calculer les angles de valence et les orbitales hybrides de l'eau et de l'ammoniac. Les valeurs 
obtenues sont sup6rieures d'environ 2 ~ aux valeurs exp6rimentales. Les meilleures orbitales hybrides 
de ces deux mol6cules ont ~t6 aussi calcul6es par la m6thode simplifi6e de Golebiewski. 

Introduction 

The predic t ion of b o n d  angles, in general,  has to be carried out  with approxi-  
mate  methods  which suggest plausible structures rather  than  give definite de- 
mons t ra t ions  of structure. Unfor tunate ly ,  accurate calculat ions are tedious and  
very complicated,  and  only a few have been carried out. Compara t ive ly  con-  
siderable calculat ions have been reported in l i terature on  the H 2 0  molecule 
[-2-7]. Ob ta ined  results are summar ized  in Tab le1 .  The NH3 molecule has 
received also much  a t t en t ion  from a n u m b e r  of authors  [6--11], who used different 
approaches and  ob ta ined  results with different degrees of accuracy (Table 2). 

F r o m  the review con ta ined  in the Table 1 and  2 it follows that  the used methods  
lead, however,  to long computa t ions .  It  is preferable to compute  valence b o n d  
angles by methods  which are less obvious  bu t  which are easier to use. 

Paul ing  and  Sherman  [1] have shown for a one electron bond  that  its energy 
varies considerably  with force of the hybr id  in the direct ion of the bond.  M a n y  
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T a b l e  1. Calculated values and experimental equilibrium bond angle for a 2 0  

Reference  M e t h o d  of  c a l c u l a t i o n  N u m b e r  a n d  type  B o n d  ang le  

o f  bas i c  func t i ons  

P resen t  c a l c u l a t i o n  M a x i m u m  o v e r l a p  m e t h o d  5 S T A O ' s  107 ~ 10' 

3 o n  O a n d  1 o n  e a c h  H 

C o u l s o n "  N o n - l o c a l i s e d  o r b i t a l s  Px a n d  Pr o n  O 90 ~ 

h 1 a n d  h 2 o f  the  H 

D u n c a n  b M e t h o d  of  loca l i sed  s a n d  p o n  O a n d  h,  120.2 ~ 

o r b i t a l s  a n d  h b o n  H 

Boys  c S i n g l e - d e t e r m i n a n t  l inea r  c o m b i n a t i o n  o f  96 ~ 

o n e - c e n t e r  S C F - C I  d e t e r m i n a n t s  c o r r e s p o n d i n g  

to  t h i r t y  c o n f i g u r a t i o n s  

F r o s t  a M o d e l  o f  f loa t ing  Sphe r i ca l  G T O ' s  88 ~ 
loca l i sed  o rb i t a l s  

P o p l e  ~ C N D O  m e t h o d  5 S T A O ' s  wi th  107.1 ~ 

3 o n O a n d l o n e a c h H  

P o p l e  ~ I N D O  m e t h o d  5 S T A O ' s  wi th  108.6 ~ 

3 o n  O a n d  1 o n  e a c h  H 

E x p e r i m e n t a l  ~ 104o45 , 

a Ref. [-2]. - b Ref. [3 ] .  - ~ Ref. [-4]. - a Ref. [5] .  - e Ref. [6] .  - f Ref. [23] .  - g Ref. [-7]. 

T a b l e  2. Calculated values and experimental equilibrium bond angle for N H  3 

Refe rence  M e t h o d  of  c a l c u l a t i o n  N u m b e r  a n d  t ype  B o n d  ang le  

o f  bas is  func t ions  

Presen t  c a l c u l a t i o n  M a x i m u m  o v e r l a p  m e t h o d  7 S T A O ' s  wi th  109~ ' 

4 o n  N a n d  1 o n  e a c h  H 

H i g u c h i "  8 S T A O ' s  w i th  108 ~ 

5 o n  N a n d  1 o n  e a c h  H 

K a p l a n  b 8 H a r t r e e - F o c k  A O ' s ,  106047 ' 

5 o n  N a n d  1 o n  e a c h  H 

M o c c i a  c 21 S T A O ' s  wi th  I u p  to  3 110~ ' 

Josh i  d 109.34 ~ 

F r o s t  e 88 ~ 

P o p l e  f 106.7 ~ 

P o p l e  g 109.7 ~ 

E x p e r i m e n t a l  h 106o47 ' 

A p p r o x i m a t e  p o l y c e n t e r  
S C F - M O  

S i n g l e - d e t e r m i n a n t  

p o l y c e n t e r  S C F - M O  

S i n g l e - d e t e r m i n a n t  
o n e - c e n t e r  S C F - M O  

S i n g l e - d e t e r m i n a n t  
o n e  cen t e r  S C F - M O  

M o d e l  o f  f loa t ing  
loca l i sed  o rb i t a l s  

C N D O  m e t h o d  

I N D O  m e t h o d  

25 S T A O ' s  wi th  I u p  to  5 

Sphe r i ca l  G T O ' s  

7 S T A O ' s  wi th  
4 o n  N a n d  1 o n  e a c h  H 

7 S T A O ' s  wi th  
4 o n  N a n d  1 o n  e a c h  H 

" Ref. [ 8 ] . -  b Ref. 1"9]. - c Ref. [10] .  - a Ref. [11 ] .  - e Ref. [5] .  - f Ref. [6 ] .  - g Ref. [23] .  - -  
h Ref. I-7]. 
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objections can be raised to Pauling's [1, 12] concept of the strength of a hybrid. 
For example Maccoll [13] has observed that the strength of a hybrid bond orbital 
as defined by Pauling and the C-C(a) bond dissociation energy does not always 
increase in the same order. Therefore Maccoll has proposed the use of the overlap 
integral between a hybrid orbital and the orbital characterising the other atom 
of the bond. 

In the present paper a new approximate maximum overlap method for the 
determination of the bond angles for polyatomic molecules is proposed. 

Calculations and Results 

a) Calculations: The General Method 

Because bond overlap is very sensitive to the angle of deviation between the 
hybrid forming a bond and the straight atom-atom line, and because this angle 
does not depend strongly on the particular choise of atomic orbitals, or atomic 
overlap integrals employed, the method of maximum overlap seems suitable for 
the determination of bond valence angles in molecules. 

Let us assume that we know the approximate geometrical configuration of the 
molecule of a type MXk and also any set of linearly independent orthonormal 
atomic orbitals qh, ..., ~P, of the central atom, M, and O1 ... . .  Ok a set of atomic 
orbitals of the ligands. Murrell [14] suggested to look for the k best hybrid 
orbitals of the central atom M, 

(1) 

(where n > k) such that the sum of all "bond strength" 

k 
<Oil~i> = trS1 

i=1 
(2) 

is a maximum. The matrix $1 in Eq. (2) is given by the formula: 

S1 \<Ok]lPl > ... <OkitPk>/t \<Ok]  q~t> <Okilq)n>/ :-SAT" (3) 

A simple method of constructing ~Pi was developed by Lykos and Gilbert [15] 
and independently and differently by Golebiewski [16]. 

The calculations are carried out within the framework of the Golebiewski 
simplified maximum overlap method. In the practical applications of the maximum 
overlap principle for the determination of bond valence angles in molecules, we 
need the explicit formulae for overlap integrals between the s, p, and d orbitals 
proposed by Golebiewski [17]. For example, all overlap integrals (O11 q~j> used 
in the present paper, can be expressed in terms of the angular co-ordinates of the 
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center of ligands a -  Og-type orbitals in the following form: 
(O l s>  = sos (x ) ,  

( O l p ~ )  = S~p(X) sinv~ cos tp~, 
(4) 

( O l p y )  = S~p(X) sin v~ sin 4~, 

( O l p z )  = S~p(X) cos v~. 

In these formulae v~ and q~ mean the angular co-ordinates of the atom X, on which 
the O-orbital is centered. The standard overlap integrals S~s(X) and S,p(X) depend 
still on bond length and the nature of both atoms. They can be evaluated if one 
knows the radial parts of the orbitals. Following the Golebiewski procedure we 
construct the overlap integral matrix S and in the next step the matrix SS  T, where 
S T is transposed. I f2  is a scalar parameter, and S S  T is a square matrix of the order 
k < n and ! the unit matrix of the same order, then we get the eigenvalues from the 
characteristic matrix of S S  T 

K(2) = [2I  - S S  ~] (5) 

we get by solution of the characteristic equation 

2 n q- C12 n-1 q- C2 2n-2 "1- "'" -b C n = 0 (6) 

where c k are functions of the elements of S S  T and are defined as 

c k = ( -  1)kSk (7) 

where Sk is the sum of all head minors of order k which appears in the matrix S S  T. 
For  the sum, 21, 22 . . . . .  2,, of the characteristic roots it is known that 

21 + 22 + ... + 2, = tr (SsT).  (8) 

For  a given geometrical configuration and a given set of orbitals qh, ~02, ..., q),, 
the "total bonds strengths", E, is given by the formula 

E = tr(SST) 1/2 = 21 [2 "~- 21/2 + " "  + 2n  1]2 . (9) 

The bond strength, E, according to Eq. (8) is a function of only (n - 1) independent 
variables, 2~, i.e. E = E(21, 22 . . . . .  2,_1). The condition that, E, should be a maxi- 
mum is given by 

OE d ~E ~3E 
d e = - - ~ - I  2 1 + ~ - 2  d22+ "'"-[-~.-1 d ~ n - l = 0  (10) 

where d21, d2 z . . . . .  cl2._ 1 are independent and not zero. To determine the "best" 
characteristic roots, 2i, the "total bonds strength" must now be maximized with 
respect to all of them, independently and simultaneously. This leads to the equa- 
tions: 

6E 
- 0  f o r a l l i  ( i = 1 , 2  . . . . .  n - l ) .  (11) 

Our problem is now in principle solved. We need only to evaluate the "best" 
characteristic roots of the system of Eq. (11) to obtain the eigenvalues of (SST) 1/2, 
which are numerically equal to the orbital energies of the LCAO-MO method 
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[17], necessary and sufficient conditions for determination of the equilibrium 
bond angles in molecules then follow from them. The "total bonds strength" may 

�9 be considered as a parameter on the basis of whichwe can speak about the stability 
of a molecule. A direct solution of the characteristic Eq. (6), for ligands more than 
k > 3, would be (aggravatingly) tedious and difficult. One can use symmetry 
properties to obtain the non-variational eigenvalues of SS T in a much more simple 
way. 

b) Results: H20,  NH3 as Examples 

H 2 0  Molecule 

We illustrate our method on the example of the H 2 0  and NH3 molecules. 
The most familiar angular triatomic molecule is water, H20.  We can conveniently 
derive the molecular orbitals and bond angle for the HeO molecule by placing 
the oxygen atom at the origin of an xy z  co-ordinate system. The two hydrogens 
are placed in the xz  plane, as shown in Fig. 1. It is convenient to bend each hydro- 
gen the same angle from the z axis, so that the z axis bisects v. The valence orbitals 
involved are 2s and 2px, 2pr, and 2pz for oxygen and ls for hydrogen. The 2py is 
available for bonding, but hydrogens do not have ~r valence orbitals in the ground 
electronic state [18]. 

~ l-t a 

Fig. 1. Co-ordinate system for H20 

The spherical co-ordinates of hydrogen atom are Ha(ro_n, , v, qS=0 ~ 
Hb(ro_H ~, v, 4 =  180~ Using the following set of atomic orbitals, the atomic 
overlap integrals matrix becomes: 

ls,  ls b 

R = 2 p x [ S ~ p s i n v  - S , p s i n v l .  
2pz k,S~p cos v S~p cos v] 

(12) 

In the Golebiewski method [17-1 the matrix R x, which has k rows and n columns 
is noted by S. 
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The symmetric and real overlap matrix SS T will then be 

2 2 2 2 (Sos+So,  S~s+S, pcos2v~ (13) 
= 2 2 2 2 ssT kSo, + Sop cos 2v So, + Sop J 

where Sos = ( O  2s[H 1G), Sop = ( O 2p, [H lsx), (x = a or b and n = x or y) represent 
overlap integrals between appropriate atomic orbitals. 

The eigenvalues of the characteristic matrix SS T (13) are 

21 = ~ - ~ f l  2 2 = ( ~ - - f l ,  

21 + 22 -- tr (SSr) = 2~ 
_ _  2 , 2 2 2 where a - So~ + Sop and fl = S~ + Sop cos 2v. 

The variational procedure for maximizing the "total bonds strength" of the 
HzO molecule: 

E = 21/z + 21/2 

then leads to following best eigenvalues of the matrix SS T: 2a = 22 = e > 0. From 
this follows that fl = 0, or 

S]~ 
- cos 2v = cos (180 ~ - 2v) - 2 �9 (14) 

S~p 

The overlap integrals are all calculated explicitly using formulas given by 
Mulliken et al. [19]. The hydrogen-oxygen bond length is 0.960 A [7]. These 
values lead to the following atomic overlap integrals So~ = 0.238 and S~p = 0.438. 
This would make the angle between the O - H  bonds in water equal to 107~ ', as 
compared with the experimental equilibrium value 104~ ' [7]. 

N H  3 Molecule 

A familiar example of a trigonal-pyramidal molecule is NH3. The three hydro- 
gens H,,  Hb and H~, from which H~ is apart from the xz plane, form the base ofa  tri- 
gonal pyramid that has the nitrogen at the apex with the hydrogen H,  and Hb which 
lie in the plane xz. Each N - H ,  and N-Ho makes angles va = Vb = V with z and N-Hc 
makes an angle vc with z co-ordinate (Fig. 2). The spherical co-ordinates of 
hydrogen atoms are H,(rN_,o, v, ~b, = 0~ Hb(rN_nb, V ~b b = 180 ~ and Hc(rN_H~ , re, 
q~ = 90~ Bonding in N H  3 involves the hydrogens ls valence orbitals and the 
nitrogen 2s, 2px, 2py and 2p~ valence orbitals. We construct the following overlap 
matrix 

ls, l s  b l S  c 

2pz 1Sop cos v S~p cos v S~p cos 
R = 2 p , ~ 0  0 Sovsinv~)" 

2px \Soy  sin v - Sop sin v 0 

For  the matrix product  S S  T w e  have 

2 2 l/S~s + S~ Sos + so~ cos 2v 
S~ + Sop s s  T = [ S L  + s~,  cos 2v 2 2 

2 2 \ S i s  + S~v cos v cos vc So~ + S ~  cos v cos vc 

(15) 

S~s + S~. cos v cos v ~  
Sis + $2~ cos v cos vcl 
sL + s~. / 

(16) 
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w h e r e  S.~ = ( N  2 s i l l  l s x )  a n d  S.p = ( N  2 p . I H  l s x )  (n = x o r  y o r  z a n d  x = a o r  b 
or  c) a re  o v e r l a p  in t eg ra l s  b e t w e e n  a p p r o p r i a t e  a t o m i c  o rb i t a l s .  

T h e  e i g e n v a l u e s  of  the  c h a r a c t e r i s t i c  m a t r i x  S S  T are  

21 = c~ - / ~  22,3 = e + /3 /2  _ 1/2(/32 + 872) 1/2 (17) 

a n d  

21 + 22 + 23 = t r ( S S  T) = 3c~ (18) 

w h e r e  e = $2, + S~2p,/~ - 2 2 - S~s + S,p cos  2v, a n d  y = S ~ +  S~2p cosy  cosvc. 

l z 

~,/ - -He  

N 

f 
Fig. 2. Co-ordinate  system for N H  3 

I t  is n o w  r e q u i r e d  t o  f ind the  v a l u e  of  v a n d  v c t h a t  m a k e s  the  ene rgy  of  the  sy s t em 
a m i n i m u m ,  a n d  h e n c e  the  " t o t a l  b o n d s  s t r e n g t h "  a m a x i m u m .  T h e  v a r i a t i o n a l  
p r o c e d u r e  for  m a x i m i z i n g  the  " t o t a l  b o n d s  s t r e n g t h "  of  N H  3 m o l e c u l e  

E = 21/z  + 212/2 + 2~/2 (19) 

then  l eads  to  f o l l o w i n g  " b e s t "  e igenva lues  of  the  m a t r i x  S S  T, w h i c h  a re  21 = 22 
= 23 = e > 0 a n d  h e n c e  fl = 0, a n d  a l so  y = 0. Th i s  m e a n s  t h a t  

cos  2v 2 2 = - S~s/Sap (20) 

cosvc _(2)a/2 2 2 2 ,~,2 ]1/2 = S , , s /S ,p (S , ,p  - _~,, . (21) 

T h e  h y d r o g e n - n i t r o g e n  b o n d  l eng th  used  is 1.014 ~ [7]  a n d  the  o v e r l a p  i n t eg ra l s  
a re :  S,~ = 0.286 a n d  S~p = 0.491. F r o m  Eq.  (20) for  2v we have  109~ ', a n d  this  is 
b o n d  a n g l e  H ~ - - N - H  b a n d  f r o m  Eq.  (21) for  vr i t  fo l lows  t h a t  v c = 126~ '. B o n d  
angles  H ~ - - N - H ~  a re  d e t e r m i n e d  on  the  bas i s  of  s ca l a r  p r o d u c t  o f  vec to r s  de f ined  
b y  the i r  c o - o r d i n a t e s :  x a = rN_ N cos (90  ~  v), Ya = 0, za = rN_ H COSY, Xt, = - - r N _  H 
" COS (90 ~ --  V), Yb = 0, Z b = rN_ n COS V, Xc = 0, yr = rN_ n Cos (90 ~ --  v), z~ = rN_ H COS V~. 
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We may write 

2 2 cos (Ha-N-He)  = cos (Hb-N-Hc)  = cosy cosy c = - S,JS,~p = -0 .3351 .  (22) 

This theory leads to calculated equilibrium bond angles 109035 ' which are in 
reasonable agreement with the experimental. 

Best Hybrid Orbitals for HzO and NHa 

Now we find the best hybrid orbitals for the molecule H / O  by the Golebiewski 
simplified method [17]. The best hybrid orbitals are expressed in the form 

{~p} = A {q~} = SsT-a /2s{~p}  (23) 

where A is the matrix of the best linear t ransformation coefficients; {~p} and {r 
are column matrices. For  the matrix (SST) -1/2 we have 

(ssT)- 1/2 : s -~- :ap+  0 •2 ~-~/a �9 (24) 
(s~, + :~ , ,  

The best hybrid orbitals are obtained according to Eq. (23), for calculated valence 
angle for H 2 0  2v = 107o10 , it follows: 

~p~ = 0.478s + 0.707px + 0.522p~, (25) 

~P2 = 0.478s - 0.707px + 0.522p~. 

The "total  bonds strength" for the H2O molecule is: 

E = ( t rSST)  a/2 2($2s ~_ ,q2 ]1[2 = --~P" =0.9968.  

The diagonal elements of E have been chosen positive to ensure the maximum 
value of the trace 1-16]. 

Similarly as for H 2 0  the best hybrid orbitals are defined also for NH3 molecule 
by Eq. (23), where 

t (~q'2 4- ,~2 ]-1/2 0 0 t k~crs - -  ~f fp l  
( s s T ) -  1/2 = 0 (,q'2 + .~2 ~-1/2 0 (26) 

\ - -~s - -  --typ/ 
0 0 ( S 2 s _ ~  ,~2 )-1/2 -o-p! 

For  the angles calculated in this paper  for best hybrid orbitals we have 

~01 = 0.508s + 0.503px + 0.712p z , 

~P2 = 0.508s - 0.503p~ + 0.712p~, (27) 

~v 3 = 0.508s + 0.516pr - 0.703pz. 

The "total bonds strength" for the N H  3 molecule is: E = 1.7046. 

Discussion 

Volkov and Dyatkina  [20], also used a method of maximum overlap in order 
to find stable configuration of molecules UF2 and UF3. Maksid, Klasinc and 
Randid [21] succesfully applied the maximum overlap method to the calculation 
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of  the hybridizat ion in high strained small ring molecules. The most  impor tan t  
feature of the me thod  used here is that  it maximizes directly the "total  bonds  
strength", wi thout  using the other  conditions. Mulliken 1-22] has examined the 
bonding energy and the overlap integrals in some depth. Mulliken has drawn 
at tent ion to the fact that  the values of  this integrals depend strongly on the 
part icular  form of explicit functions used to represent an orbital, and that, for 
example a function of  Slater's and a self-consistent field function lead to different 
results. In the present paper  the calculated equilibrium valence angles for H 2 0  
and NH3  are about  2 ~ too  high with respect to experimental values. A better 
agreement  with experimental  values could be expected with Clementi or some 

- other more  realistic wave functions. It is possible to draw a compar ison  between 
the max imum overlap and the more  elaborate other  methods.  Bond angles of  
smaller po lya tomic  molecules have been calculated by Pople and Segal 1-23] 
using the M O - L C A O - S C F  method  with zero-differential overlap approximat ion.  
In the light of  their results the success of  the present calculation is very astonishing. 
However,  their methods  employ semi-empirical bond  parameters  which are 
adjusted to experimentally known properties of other, usually dia tomic mole- 
cules. In this way large classes of more  or less similar molecules can be calculated 
sometimes with rather  high accuracy. Valence angles for more  accurate methods,  
such as ment ioned semi-theoretical methods  in the Tables 1 and 2, or even 
more  accurate sophisticated approaches,  m a y  not  easily yield results. F r o m  this 
point  of  view our  me thod  based on the m a x i mum overlap principle appears to be 
part icularly useful for determinat ion of  the stable configurat ion of  molecules. 

F r o m  the obtained results it follows that  according to the variat ion principle 
of  quan tum mechanics,  the individual AO ' s  compos ing  a hybrid  AO in a molecule 
should be adjusted in such a way as to maximize the "total  bonds  strength". A 
good  example is that  the improvemen t of  the H 2 0  and N H  3 molecule valence 
bond  angles and hybrid  wave function by using 2s - 2pa hybrid  AO's  instead of  
pure pa AO's.  

It is intended to extend calculations of the type used here to other  symmetrical  
t r iatomic AB 2 and te t ra tomic AB 3 molecules. 
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